One's own country and familiar places in the mind's eye: different topological representations for navigational and non-navigational contents.
نویسندگان
چکیده
Visual mental imagery is a process that draws on different cognitive abilities and is affected by the contents of mental images. Several studies have demonstrated that different brain areas subtend the mental imagery of navigational and non-navigational contents. Here, we set out to determine whether there are distinct representations for navigational and geographical images. Specifically, we used a Spatial Compatibility Task (SCT) to assess the mental representation of a familiar navigational space (the campus), a familiar geographical space (the map of Italy) and familiar objects (the clock). Twenty-one participants judged whether the vertical or the horizontal arrangement of items was correct. We found that distinct representational strategies were preferred to solve different categories on the SCT, namely, the horizontal perspective for the campus and the vertical perspective for the clock and the map of Italy. Furthermore, we found significant effects due to individual differences in the vividness of mental images and in preferences for verbal versus visual strategies, which selectively affect the contents of mental images. Our results suggest that imagining a familiar navigational space is somewhat different from imagining a familiar geographical space.
منابع مشابه
Learning Places from Views: Variation in Scene Processing as a Function of Experience and Navigational Ability
Humans and animals use information obtained from different viewpoints to form representations of the spatial structure of the world. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the neural basis of this learning process and to show how the concomitant representations vary across individuals as a function of navigational ability. In particular, we examined the e...
متن کاملCombining Navigational Planning and Reactive Control
Traditional AI methods for navigational planning use qualitative spatial representations and reasoning. Traditional robotics techniques for this task are based on numerical representations and reasoning. Recent work on robotics posits mechanisms for reactive control that directly map perceptions of the world to actions on it. This in turn has given rise to hybrid robot architectures that combin...
متن کاملRTDGPS Implementation by Online Prediction of GPS Position Components Error Using GA-ANN Model
If both Reference Station (RS) and navigational device in Differential Global Positioning System (DGPS) receive signals from the same satellite, RS Position Components Error (RPCE) can be used to compensate for navigational device error. This research used hybrid method for RPCE prediction which was collected by a low-cost GPS receiver. It is a combination of Genetic Algorithm (GA) computing an...
متن کاملIntegrating fuzzy topological maps and fuzzy geometric maps for behavior-based robots
In behavior-based robots, planning is necessary to elaborate abstract plans that resolve complex navigational tasks. Usually maps of the environment are used to plan the robot motion and to resolve the navigational tasks. Two types of maps have been mainly used: metric and topological maps. Both types present advantages and weakness so that several integration approaches have been proposed in l...
متن کاملRobot Mapping with a Topological Map of Local Space Representations
In this paper we show how a cognitive mapping theory [1,2] can be used to implement a navigational map for a robot. At the core of this theory is the notion that a representation is computed for each local space the robot visits. These representations are connected in the way they are experienced to form a topological network of local space descriptions. We show how the local space representati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 579 شماره
صفحات -
تاریخ انتشار 2014